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Abstract. The vertical distribution of cloud water content (CWC) and cloud fraction (CF) over 1 

the tropical oceans, produced by 13 coupled atmosphere-ocean models submitted to the Phase 5 2 

of Coupled Model Intercomparison Project (CMIP5) are evaluated against CloudSat/CALIPSO 3 

observations as a function of large-scale parameters. Available CALIPSO simulator CF outputs 4 

are also examined. A diagnostic framework is developed to decompose the cloud simulation 5 

errors into the large-scale errors, cloud parameterization errors and co-variation errors. We find 6 

that the cloud parameterization errors contribute predominantly to the total errors for all models. 7 

The errors associated with large-scale temperature and moisture structures are relatively greater 8 

than those associated with large-scale mid-tropospheric vertical velocity and lower-level 9 

divergence. All models capture the separation of deep and shallow clouds in distinct large-scale 10 

regimes; however, the vertical structures of high/low clouds and their variations with large-scale 11 

parameters differ significantly from the observations. The deep convective clouds simulated in 12 

most models do not reach as high in altitude as observed, and their CWC are generally weaker in 13 

magnitude than CloudSat total CWC, which includes the contribution of precipitating 14 

condensates, but are close to CloudSat non-precipitating CWC. All models reproduce maximum 15 

CF associated with convective detrainment, but CALIPSO simulator CFs agree better with 16 

CloudSat/CALIPSO combined retrieval than the model CFs, especially in the middle 17 

troposphere. Model simulated low clouds tend to have little variation with large-scale parameters 18 

except for lower-troposphere stability, while the observed low cloud CWC, CF and cloud top 19 

height vary consistently in all large-scale regimes.       20 
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1. Introduction 1 

The simulations of clouds by the nearly 20 models submitted to the Phase 5 of Coupled Model 2 

Intercomparison Project (CMIP5) exhibit large discrepancies from satellite observations [Jiang et 3 

al., 2012]. Despite a number of models displaying a certain degree of improvement in some 4 

aspects of the cloud simulations (e.g., the column-integrated cloud water path), no substantial 5 

improvements across the models are found compared to those submitted to the Phase 3 of CMIP 6 

(CMIP3), which constitute the basis for the climate projections in the Fourth Assessment Report 7 

(AR4) by the Intergovernmental Panel for Climate Change (IPCC) [Randall et al., 2007]. Hence, 8 

improving the representation of clouds in climate models still poses a great challenge. While the 9 

spatial resolution of climate models will likely increase substantially in the years ahead (e.g., from 10 

hundreds of kilometers to tens of kilometers in horizontal resolution), many cloud processes will 11 

still be parameterized because they occur on sub-grid scales. To help validate and formulate cloud 12 

parameterizations, it is important to examine the relationships between observed cloud properties 13 

and their environment and then compare these observed relationships with those simulated by 14 

models. This study documents the relationship between the cloud vertical structures and large-15 

scale parameters in CMIP5 model simulations, and evaluates these relationships against those 16 

from state-of-the-art satellite observations. It complements our earlier work [Jiang et al., 2012], in 17 

which the CMIP5 model performance in simulating water vapor and clouds over the tropical 18 

oceans was quantified in terms of spatial mean, variance and correlation. One particular question 19 

we address is how much discrepancy of simulated clouds from observations is caused by errors in 20 

simulating large-scale parameters and how much is caused by cloud parameterizations used by the 21 

models.    22 
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Two cloud properties are examined in our analysis: the vertically resolved cloud water content 1 

(CWC) and cloud fraction (CF), both being important variables in determining cloud radiative 2 

effect (CRE), although their treatments in radiation codes may vary among models. Errors 3 

stemming from either variable have varying degree of impact on CRE calculations. Thus, it is 4 

necessary to inspect both quantities. To our knowledge, there have been parallel efforts in 5 

evaluating CMIP5 simulated clouds in terms of cloud fraction, cloud optical depth, cloud top 6 

height, cloud occurrence frequency and simulated satellite radiances (such as reflectivity) (e.g., S. 7 

Klein and group, personal communication, 2012).  The multi-facets of cloud simulations revealed 8 

by different cloud variables will provide comprehensive knowledge of cloud processes and help to 9 

accelerate the progress of improving cloud simulations in models, contributing to the reduction of 10 

uncertainties in climate change predications.  11 

This model diagnosis work primarily utilizes the “conditional sampling approach” originated 12 

by Bony et al. [2004], in which cloud variables are sorted into bins of large-scale parameters, 13 

representing distinct large-scale dynamic and thermodynamic regimes. These large-scale variables 14 

may directly or indirectly enter the cloud parameterization schemes to govern cloud formation, 15 

growth and dissipation, and they also vary simultaneously as clouds evolve. A number of studies 16 

have applied this approach to address cloud and water vapor variabilities and feedbacks [Bony and 17 

Dufresne, 2005; Huang et al.; 2006; Williams et al., 2003; Wyant et al., 2006; Bennhold and 18 

Sherwood, 2008; Zhang et al., 2007; Su et al., 2008; Su et al.; 2011]. In Su et al. [2008], eight 19 

large-scale quantities were examined in relation to CloudSat observed CWC profiles. Clear 20 

clustering of cloud structures in large-scale regimes was revealed. In this study, we use six large-21 

scale environmental parameters, including mid-tropospheric vertical velocity at 500 hPa (ω500), 22 

lower-level divergence (LDV), sea surface temperature (SST), lower tropospheric stability (LTS), 23 
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water vapor path (WVP), and relative humidity (RH) to sort CWC and CF profiles. We also 1 

conditionally sample clouds by precipitation so as to evaluate how models capture the co-2 

variability of the two products out of moist processes. In this study, we do not use SST gradient 3 

and convective available potential energy (CAPE) as in Su et al. [2008] because the cloud profiles 4 

sorted by these two variables are not as distinctly clustered as by other variables [Su et al., 2008]. 5 

Using a number of large-scale parameters offers multiple perspectives of the cloud processes and 6 

demonstrates clear benefits over using a single parameter, as we will show later. A “good” model 7 

performance in one large-scale regime does not guarantee a good performance in another regime. 8 

When comparing the cloud distributions in large-scale regimes between observations and 9 

model simulations, one may wonder whether and how much the departures from observations are 10 

caused by the imperfect simulations of large-scale parameters. Su et al. [2011] used three large-11 

scale variables, ω500, SST and LTS, to sort cloud simulations in two climate models and one re-12 

analysis system. They showed that the clouds produced by the re-analyses system match closer to 13 

the CloudSat observation than the two free-running models, demonstrating that more stringent 14 

constraint on grid-scale state variables helps to produce better cloud fields. For CMIP5 15 

atmosphere-ocean coupled models, the large-scale environmental variables are governed by 16 

internal model dynamics and could have sizeable deviations from observations. Such large-scale 17 

errors may propagate into cloud errors through cloud parameterizations. On the other hand, our 18 

insufficient knowledge of cloud processes translates into unjustified ad hoc assumptions in cloud 19 

parameterizations, causing significant errors in simulated clouds even though the large-scale states 20 

are correctly simulated. A primary goal of this study is to examine the relative contributions of 21 

large-scale errors and cloud parameterization errors. To achieve this, we devise an innovative 22 
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diagnostic framework to decompose the two types of errors and quantify their relative importance. 1 

Such decomposition is particularly useful to identify target areas for future model improvements.  2 

    The structure of the paper is as follows. Section 2 describes the observational datasets, models 3 

and the diagnostic approach. Section 3 presents the comparison of the regime-sorted cloud profiles 4 

and the decomposition of cloud errors. Concluding remarks are given in Section 4.  5 

2. Observations, Models and Diagnostic Approach 6 

2.1 Observations 7 

  We use CWC profiles from CloudSat 2B-CWC-RO (V4) and CF from combined radar and 8 

lidar retrievals, version 4 [Austin et al., 2009]. The uncertainties for CWC and CF are a factor 2 9 

and ~5%, respectively [Jiang et al., 2012]. For CloudSat CWC retrieval, the inclusion of 10 

precipitating particles is a major concern when comparing with model outputs that may or may not 11 

include rain or snow in the reported ice water content (IWC) or liquid water content (LWC) [Jiang 12 

et al., 2012; Waliser et al., 2009]. Su et al. [2011] showed that the vertical structure of non-13 

precipitating CWC sorted by various large-scale variables does not differ significantly from total 14 

CWC. Thus, we use the total CWC sorted by large-scale parameters to compare with the modeled 15 

counterparts for discussions of cloud vertical structure. For a quantitative estimate of model 16 

biases, we use non-precipitating and total CWC as the lower and upper bounds of observed CWC, 17 

respectively. To conduct the conditional sampling, we construct monthly CWC and CF at 18 

horizontal grids of 2.5º (longitude) × 2º (latitude) each and onto 40 vertical levels from the surface 19 

to 20 km, with an interval of 500 m. The monthly CloudSat/CALIPSO data from August 2006 to 20 

July 2010 are used. As CloudSat/CALIPSO observations are made twice a day (at ~1:30am and 21 

~1:30pm local time), we limit our analysis to tropical (30°S-30°N) oceanic regions where the 22 
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impact of cloud diurnal cycle on the monthly mean data is relatively small. The quality of satellite 1 

retrievals is generally better over ocean than over land [Austin et al., 2009]. 2 

The observed mid-tropospheric vertical velocity at 500 hPa (ω500) is taken from the European 3 

Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis to represent large-scale 4 

circulation. Low-level divergence (LDV) is defined as the mean horizontal divergence within 1000 5 

hPa and 850 hPa (i.e., dpV
dP

LDV )(
1 1000

850

r

∫ ⋅∇= , where dP=150 hPa and V
r

is the horizontal winds), 6 

calculated from ECMWF interim reanalysis. LTS is calculated as the potential temperature 7 

difference between 1000 and 700 hPa (LTS = θ1000 – θ700) based on the temperature measurements 8 

from the Atmospheric Infrared Sounder (AIRS) on Aqua. For SST and WVP, we use the retrievals 9 

from the Advanced Microwave Scanning Radiometer (AMSR-E) on Aqua, downloaded from the 10 

Remote Sensing Systems (http://www.remss.com) with a horizontal resolution of 0.25°×0.25°. We 11 

also use the relative humidity with respect to water (ice for pressures less than 300 hPa) from 12 

ECMWF interim reanalysis to sort cloud profiles. We explored using RH data from AIRS to sort 13 

cloud profiles but found that the low bias of AIRS RH data in heavily cloudy regions limits its use. 14 

The observed precipitation data are taken from the Global Precipitation Climatology Project 15 

(GPCP) monthly product from January 1980 to December 2004. The temporal coverage for 16 

satellite data depends on respective mission periods. For conditional sampling, we re-grid the 17 

original observed large-scale datasets onto horizontal grid boxes of 2.5º (longitude) × 2º (latitude), 18 

same as the CWC and CF. Details about the satellite data used can be found in Jiang et al. [2012]. 19 

2.2 CMIP5 models 20 

While 19 models were examined in Jiang et al. [2012], only 13 of them are used in this study for 21 

two reasons. First, we select only models that, at least, are atmosphere-ocean coupled, as they are 22 

used for future climate predictions. NCAR cesm1-cam5 is an atmosphere-ocean coupled model but 23 



 8

is not yet included because many of its large-scale variables are not archived on the ESG at the 1 

time of this study. The atmosphere-only model simulations use prescribed SST, and thus are not 2 

fair comparisons with coupled model simulations. Second, we choose models that have archived 3 

both CWC and CF at the Earth System Grid (ESG) hosted by the Program for Climate Model 4 

Diagnosis and Intercomparison (PCMDI). All model outputs are from the last 25 years of “the 5 

historical runs” [Taylor et al., 2012] from 1980-2004. Original model outputs are re-gridded to the 6 

same 2.5º×2º horizontal grid boxes and 40 vertical levels as done for the observed clouds. CSIRO 7 

mk3.6 model outputs of large-scale state variables are limited to 920 hPa and above. Thus, its LDV 8 

refers to the averaged divergence between 920 and 850 hPa. To calculate its LTS, we use SST 9 

instead of air temperature at 1000 hPa, which is used for all other models.  The model descriptions 10 

and key references can be found in Table 1 of Jiang et al. [2012]. 11 

In some of the models, satellite simulators are implemented. The Cloud Feedback Model 12 

Intercomparison Project (CFMIP) has developed an integrated satellite simulator, the CFMIP 13 

Observation Simulator Package (COSP) for use in many CMIP5 models [Bodas-Salcedo et al., 14 

2011]. These simulators take into account instrument sensitivities and can circumvent retrieval 15 

errors when their outputs of satellite radiances are directly compared with satellite measurements 16 

(e.g., radar reflectivity, brightness temperature). Bodas-Salcedo et al. [2008] showed useful 17 

application of CloudSat simulator in evaluating model simulated cloud structures. However, 18 

differences in the simulated radiances from the simulators in models compared to the satellite 19 

measurements may not tell the differences in the modeled CWC from the “true” CWC because the 20 

“true” cloud particle size and shape are unknown and assumptions for them in the simulators are 21 

model-dependent. It is possible to obtain very similar radiances from the simulators given two 22 

different CWC profiles by using different cloud particle size assumptions. For CWC, comparing 23 
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model outputs with the CloudSat retrieval is probably not more uncertain than comparing 1 

reflectivity and then inferring CWC [Steve Klein 2012, personal communication]. For CF, 2 

however, CloudSat/CALIPSO simulator CF may be a more fair choice for comparison with the 3 

radar-lidar combined CF as instrument sensitivity is one of the most important factors in cloud 4 

detection which determines CF, other than cloud particle size and shape assumptions. At the time 5 

of analysis, only six models (CCCMA am4, CNRM cm5, IPSL cm5a, MIROC miroc5, MRI 6 

cgcm3, and UKMO hadgem2-es) on the ESG provide CALIPSO simulator CF and two models 7 

have CloudSat simulator CF, while many provide the International Satellite Cloud Climatology 8 

Project (ISCCP) simulator CF. For purposes of illustration, we examine both the original and 9 

CALIPSO simulator CF for the six models, and use only the original CF for the rest of models. We 10 

plan to add more simulator CF results when the outputs become available on the ESG. 11 

Figure 1 shows the zonal-mean and tropical-mean (30°N-30°S) original and CALIPSO 12 

simulator CF for the six models. For the zonal means, it is clear that all simulator CFs are less than 13 

the original model CFs in most of the free troposphere and at all latitudinal bands, except that 14 

CCCMA am4 simulator CF shifts higher in altitude than the original CF in the tropical upper 15 

troposphere. The lower values of the CALIPSO simulator CF than the original CF likely result 16 

from the inability of CALIPSO to see through thick clouds.  For the tropical means, the CALIPSO 17 

simulator CF for CCCMA am4 is greater than the original CF at pressure levels above 200 hPa and 18 

in the boundary layer, but is significantly smaller than the original CF between 800 hPa and 200 19 

hPa. For all other models, the simulator CF is smaller than the original CF over most of the 20 

troposphere, except that IPSL and MIROC models have the simulator CF about 5% greater than 21 

the original CF at 900 hPa.  For MRI cgcm3 and UKMO hadgem2-es, the CALIPSO simulator CF 22 

and the original CF are nearly identical at altitudes higher than 200 hPa. Apparently, instrument 23 
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sensitivity matters in the quantitative comparison of CF. An ideal choice for the comparison 1 

against the radar-lidar combined CF retrieval should be combined radar-lidar simulator CF, which 2 

is not available at present. Hence, using CALIPSO simulator CF alone does not fully address the 3 

“fairness” of model-data comparison. Nevertheless, the differences between the simulator CF and 4 

original CF shown in Figure 1 illustrate the uncertainties associated with satellite retrievals and 5 

caveats using original CF for quantitative comparison with observations. We shall bear in mind 6 

these caveats when interpreting the model-observation discrepancies.  7 

2.3 Diagnostic framework 8 

The essence of the conditional sampling approach is to treat tropical clouds as a function of 9 

large-scale regime parameters, in lieu of geographical spatial coordinates. We denote the observed 10 

and model simulated cloudiness (CWC or CF) in a large-scale regime of the variable V as o
vC and 11 

m
vC , respectively, and the occurrence frequency (probability density function, pdf) of the large-12 

scale regime V as o
vP for observations and m

vP  for models, with Pv
o,m

−∞

+∞

∫ dV =1.  The tropical-13 

averaged cloudiness, <C>, can be expressed as an integral of cloudiness in each regime over the 14 

entire range of the V values,  i.e.,  15 

< Co,m >= Pv
o,mCv

o,m

−∞

+∞

∫ dV . (1) 16 

The difference between the model-simulated and observed cloudiness in each regime V 17 

is o
v

o
v

m
v

m
vvv CPCPCP −=)(δ , which can be decomposed into three components, 18 

vvv
o

vv
o
vvv CPCPPCCP δδδδδ ⋅+⋅+⋅=)(   . (2) 19 

In eq. (2), o
v

m
vv PPP −=δ  is the difference between the modeled and observed pdf of large-20 

scale regime V and the first term on the right hand side (r.h.s.) represents the cloud errors 21 
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associated with inaccurate simulations of large-scale parameters assuming accurate cloud 1 

parameterizations (Cv
o )  – we call it the “large-scale error”. The second term on the r.h.s. of eq. (2) 2 

represents the cloud errors due to the incorrect cloud parameterizations ( o
v

m
vv CCC −=δ ) given 3 

the correct large-scale parameter pdf (Pv
o ) – we call it the “cloud parameterization error”. The last 4 

term is the co-variation of the first two error sources. Integrated over the possible values of V on 5 

the tropics, we can compute the total errors on the tropical mean and the contributions of each 6 

component to the total errors.  7 

3.  Results 8 

3.1 Sorting clouds by dynamical variables ω500 and LDV 9 

3.1.1 Correlation between ω500 and LDV 10 

Although it is beneficial to examine the cloud structure in many different large-scale 11 

parameters, it is well-known that these large-scale parameters are not independent. Here, we 12 

examine to what extent they are correlated so that we have an idea about how much additional 13 

information may be provided by using multiple parameters for conditional sampling. For 14 

dynamical regimes, we choose ω500 and LDV as two regime indicators. The scatter plot in Figure 2 15 

demonstrates they are indeed correlated with a correlation coefficient of 0.77. The upward motion 16 

corresponds to lower-level convergence and vice versa. Noticeable scatter exists, especially over 17 

intermediate circulation regions (–40 hPa/day < ω500 < 20 hPa/day), where a wide range of LDV 18 

values (either divergence or convergence) are associated with the same vertical velocity. As 40% 19 

of the variance of LDV is not explained by ω500, examining clouds in the functional space of LDV 20 

would provide some new information in addition to sorting clouds by ω500.  21 

3.1.2 Cloud profiles sorted by ω500  22 
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Since Jiang et al. [2012] evaluated the model performance in simulating the magnitudes of 1 

CWC and CF at discrete pressure levels, our attention in this paper is focused on the vertical 2 

variations of CWC and CF in large-scale parameter regimes. Figure 3 displays the modeled CWC 3 

and CF (as well as simulator CF, if available) as a function ω500 for CloudSat/CALIPSO 4 

observation and 13 CMIP5 models. The horizontal map of the tropical ω500 from ECMWF 5 

averaged for the CloudSat/CALIPSO observation period (2006-2010) is shown on the lower-right 6 

corner, and the differences between the model simulated and the ECMWF reanalysis ω500 (25-year 7 

average) are shown under each model. The observed CWC and CF are grouped into two clusters: 8 

one associated with deep convective clouds in the ascending regimes and one associated with 9 

stratiform clouds in the descending regimes. As ω500 changes from positive to negative, CWC and 10 

CF amounts in the boundary layer (below 800 hPa) decrease, while their amounts in the middle 11 

and upper troposphere (UT) increase. The height of maximum CWC is lower than the height of 12 

maximum CF because of the high sensitivity of CALIPSO lidar to thin cirrus. All models capture 13 

the two dominant modes of clouds (high and low clouds); however, the variations in the vertical 14 

and with ω500 differ substantially from the observations.  15 

In the large-scale ascending regimes (ω500 < 0), out of the 13 models, only two GISS models 16 

(e2-h and e2-r, the same atmospheric model coupled to two different ocean models) reproduce the 17 

high CWC in the UT around 200 hPa, although its magnitude is higher than the observed total 18 

CWC. The CF for high clouds from GISS is consistent with CWC, with its peak around 200 hPa, 19 

lower than the lidar-radar combined retrieval. The CALIPSO simulator CF for GISS is not 20 

available, which might be different from the original CF. GFDL cm3 deep convective clouds 21 

spread a broad layer from the middle troposphere to the UT; however, its maximum CWC peaks 22 

at 500 hPa, lower in altitude than CloudSat CWC. All other models do not produce CWC peaking 23 
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in the UT; instead, their CWCs maximize between 600 and 400 hPa. CCCMA canesm2 and 1 

CNRM cm5 have their maximum CWCs lower than 800 hPa over the ascending regimes.  CSIRO 2 

mk3.6 and UKMO hadgem2-es have comparable CWC magnitudes for deep clouds, both being 3 

quite weak and reaching lower in altitude than the observed. On the other hand, all models 4 

produce maximum CF around 200 hPa, where convective detrainment prevails. Most models tend 5 

to have a secondary maximum CF in the lower troposphere between 700 and 800 hPa, while INM 6 

cm4 and MIROC micro5 have a distinct peak CF around 600 hPa in addition to the maximum CF 7 

around 200 hPa. The INM cm4 has the weakest CWC in the large-scale ascending regimes among 8 

all models. Its low bias in CWC is compensated by its high bias in CF. We speculate that the 9 

modeled CF may have been heavily adjusted in some models because of its direct relevance to 10 

CRE calculations. For CWC, less attention may have been paid and there is more freedom in the 11 

models as some radiation codes do not explicitly take into account the values of CWC. For the 12 

models that produce CALIPSO simulator CF, the simulator CFs are noticeably closer to the radar-13 

lidar combined retrieval in the middle troposphere and UT, confirming the usefulness of applying 14 

simulator for CF comparison. The MIROC miroc5 has a high bias of CF in the middle 15 

troposphere, which is not alleviated by using its CALIPSO simulator CF. For models that do not 16 

have CALIPSO simulator CF, there appear to be high biases in CF from the middle troposphere to 17 

200 hPa, but low biases in CF above 200 hPa. 18 

In the descending regimes (ω500 > 0), all models rightly produce clouds in the lower 19 

troposphere, although the CWC and CF magnitudes, the cloud top heights and how CWC and CF 20 

change with ω500 vary significantly between the models and the observation. INM has the lowest 21 

low cloud CWC among all models. MRI cgcm3 also has little stratiform clouds, with a local 22 

maximum around ω500 of 20-30 hPa/day, unlike the observed low cloud CWC maximizing over 23 
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ω500 > 50 hPa/day. Most models do not reproduce the decrease of CWC in the boundary layer 1 

when the subsidence rate decreases, except CSIRO mk3.6 and GFDL cm3, despite that its 2 

magnitudes in CWC and CF are different from the observations. All modeled CWCs in the 3 

descending regimes are smaller than CloudSat total CWC but greater than CloudSat non-4 

precipitating CWC (not shown). The simulated low cloud CFs are generally smaller than the 5 

observed, except for INM cm4 and MIROC miroc5. The MIROC miroc5 CALIPSO simulator CF 6 

is rather similar to its original CF. The decrease of low cloud CF with the decrease of subsidence 7 

rate is better captured by the simulator CF than the original CF in the UKMO hadgem2-es. 8 

For the spatial distributions of ω500, the modeled fields tend to have a positive bias in ascending 9 

regimes but a negative bias in descending regimes, especially over southeast and equatorial Pacific.  10 

The negative biases near the inter-tropical convergence zone (ITCZ) are likely related to the 11 

common “double-ITCZ” problem manifested in precipitation. The pdfs of ω500 are broadly similar 12 

among the models and the ECMWF reanalysis.  13 

Using the diagnostic framework discussed in Section 2.3, we decompose the differences  14 

between the model simulated and observed CWC and CF into the “large-scale (ω500) error”, “cloud 15 

parameterization error” and “co-variation error” (Figure 3b). A striking feature in Figure 3b is that 16 

the total errors (bottom panels) are predominantly contributed by the “cloud parameterization 17 

error”, while the “large-scale error” and the “co-variation error” are relatively small and tend to 18 

cancel each other in most circulation regimes. This feature is even clearer in the tropical averaged 19 

errors (Figure 3c), with the contribution from the “cloud parameterization error” accounts for more 20 

than 95% of the tropical-averaged total errors. The relative small contribution by simulated large-21 

scale vertical velocity to the total cloud error is not surprising, as ω500 is largely controlled by 22 

global energy balance, which is well constrained in the models. The dominance of the “cloud 23 
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parameterization errors” reflects our lack of understanding of the sub-grid scale cloud processes, 1 

which have been and will continue being the focus of ongoing model development. 2 

Note that the actual values of model errors depend on which retrieval product is used and 3 

whether simulator CF is considered. For CWC, the sign of errors may change with response to 4 

CloudSat total or non-precipitating CWC. On the tropical average (Figure 3c), most model-5 

simulated CWCs are close to the non-precipitating (lower bound) CWC in the UT above 400 hPa, 6 

but tend to be larger than the non-precipitating CWC and smaller than the total CWC in the 7 

boundary layer. In the middle troposphere between 800 and 500 hPa, most models overestimate 8 

CWC, even compared to CloudSat total CWC, except CSIRO, INM and UKMO. Considering the 9 

CALIPSO simulator CF for CNRM, MIROC, MRI and UKMO, the CF bias is mainly in the 10 

tropical tropopause layer (TTL) above 200 hPa and in the boundary layer, while the CF bias is 11 

relatively small for the rest of the troposphere. The CCCMA simulator CF bias is approximately 12 

opposite to that for the original CF. The IPSL simulator CF is closer to the observed in the TTL 13 

but deviates more from the observed at 200 hPa compared to the original CF, indicating potential 14 

problems with the simulator itself.  The original model CF from CSIRO mk3.6 is very close to the 15 

observed at the pressure levels below 400 hPa. The similarity between CSIRO mk3.6 and UKMO 16 

hadgem2-es might because the convection schemes in both models are based on the mass flux 17 

convective parameterization by Gregory and Rowntree [1990], with varying degrees of adjustment. 18 

Within the large-scale circulation (ω500) regimes (Figure 3b), compared to CloudSat total CWC, 19 

the most common cloud parameterization errors in CWC are an underestimate of CWC in the UT 20 

and the boundary layer (note the sign change compared to non-precipitating CWC), but an 21 

overestimate of CWC in the middle troposphere and immediately near the surface. Two GISS 22 

models are different from the others in that their peak CWC is shifted too high in the UT, creating 23 
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a dipole of biases, with high (low) bias above (below) 350 hPa. Shown in Figure 3b are original 1 

CF biases, not the simulator CFs; thus, caution needs to be exercised for quantitative assessment. 2 

For the original CF, most models have high bias from 800 hPa up to 200 hPa, but low bias in the 3 

boundary layer. INM and MIROC have a high bias in CF near the surface, while MIROC has a 4 

low bias in CF in the UT. The opposite sign of high cloud CWC and CF biases for most models 5 

indicate the inconsistency in parameterized cloud mass and coverage, which is probably a result of 6 

model “tuning”. Compared to other models, CSIRO mk3.6 and UKMO hadgem2-es have 7 

relatively small biases in the middle troposphere in terms of both CWC and CF. 8 

3.1.3 Sorting clouds by LDV 9 

     Given the close correlation between ω500 and LDV, we expect clouds sorted by ω500 and LDV 10 

bear very similar features. A cursory look at Figure 4a suggests this is the case; however, a careful 11 

examination reveals interesting differences. First, the strongly lower-level convergent regimes 12 

(LDV < 0) are associated with stronger convective clouds in the lower to middle troposphere than 13 

the large-scale ascents (Figure 3a), both in the observation and models (except CSIRO mk3.6). 14 

This suggests that low and middle-level convection is strongly tired to the convergence between 15 

1000 and 850 hPa, but less correlated with mid-level vertical velocity. Differences in the UT 16 

clouds are rather small when sorted by ω500 and LDV. Second, the low clouds are congregated 17 

within the divergent regimes of LDV between 0 and 5×10-6 s–1 for the observation and most 18 

models. CWC and CF are rather uniform within this range of LDV, unlike the obvious decreasing 19 

trends in them with decreasing subsidence rate (more negative ω500). Hence, we think LDV is 20 

probably not the best quantity to characterize the variation of low cloud CWC and CF. The 21 

simulator CFs match better with the radar-lidar retrieved CF in the UT and in the boundary layer 22 

over the divergent regimes. In the two GISS models, some mid-to-high clouds emerge over highly 23 
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divergent regimes (the right most in the figure) which are relatively rare in occurrence frequency. 1 

These high clouds are not present in the observation or in the strongly descending regimes (Figure 2 

3a). They indicate an inconsistency in the model simulations of LDV or ω500.  3 

The biases in simulated LDV across the models have similar patterns to the biases in ω500. A 4 

common feature is that the models tend to be less polarized: there are positive (negative) biases in 5 

the regions of climatological convergence (divergence), resulting in less horizontal gradient in 6 

LDV. 7 

We conduct the same decomposition for the three components of errors (Figures 4b and 4c). 8 

The gross features are very similar to those in Figures 3b and 3c. The cloud parameterization 9 

errors dominate the total errors, with the large-scale and co-variation errors approximately cancel 10 

each other. On the tropical average, the cloud parameterization error accounts for nearly all of the 11 

total errors.   12 

3.2 Sorting clouds by thermodynamic variables SST, LTS and WVP 13 

3.2.1 Correlation between SST, LTS and WVP 14 

Figure 5 displays the scatter plots of LTS and WVP against SST. The linear correlation 15 

between SST and LTS is –0.73, with large scatter over cold SST less than 300 K. WVP bears an 16 

approximately exponential relationship with SST, with sharp increase of WVP when SST is greater 17 

than 300 K, related to the “super-greenhouse” effect of water vapor [Raval and Ramanathan, 18 

1989]. The linear correlation between WVP and SST is 0.90. Such scatter plots are useful for us to 19 

understand the differences in cloud structures when sorted by SST, LTS and WVP separately. 20 

3.2.2 Cloud profiles sorted by SST 21 

In SST defined regimes, the general clustering of high (low) clouds in warm (cold) SST 22 

regimes is captured by all models (Figure 6a). Compared to the high clouds in the large-scale 23 
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ascending regimes, the magnitude of high clouds over SST warmer than 300 K appears to be 1 

weaker, which is because the cloud amounts in each bin of ω500 or SST is not weighted by the pdf 2 

of that bin. It is evident that all models, except GISS e2-h and e2-r, do not produce peak CWC as 3 

high in altitude as the CloudSat observation. Most models have maximum CWC around 500-600 4 

hPa in the warm SST regimes, while IPSL cm5a and MRI cgcm3 peak even lower than 700 hPa. 5 

UKMO hadgem2-es exhibits one maximum in the UT resembling deep convective clouds, and one 6 

maximum in the middle troposphere reminiscent of cumulus congestus, but the CWC magnitude is 7 

very weak compared CloudSat total CWC (but comparable to CloudSat non-precipitating CWC), 8 

despite that the UKMO model includes snow, but no rain, in the CWC. In terms of the original CF, 9 

all models reproduce the large CF in the UT associated with convective detrainment, but many 10 

models have an overestimate of middle-level CF, which are obviously mitigated by the CALIPSO 11 

simulator CF, except in the MIROC miroc5. The MIROC high-resolution miroc4h (not shown) 12 

produces CWC very similar to the low-resolution miroc5 – the high bias of middle-level clouds in 13 

MIROC is not caused by model resolution.   14 

In the cold SST (< 300 K) regimes, we observe an appreciable increase of cloud top height 15 

with increasing SST (not so much with the decrease of ω500 in Figure 3a), accompanied by the 16 

decrease of CWC and CF. In the models, the variations of cloud top height, CWC and CF with 17 

SST are not as linear as the observed. CCCMA, CSIRO, GFDL, and IPSL models reproduce the 18 

decrease of stratiform CF with increasing SST, but the increase of cloud top height is not as 19 

conspicuous as in the observed data. The UKMO simulator CF has a nice resemblance to the 20 

observed variation, although its original CF has little systematic change with SST. In other models, 21 

low cloud CF stays nearly constant or even increases with SST for SST lower than 295 K. As Bony 22 

and Dufresne [2005] pointed out, the variation of low cloud fraction or CWC with SST is very 23 
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important in determining the net cloud radiative forcing sensitivity to climate change. Hence, 1 

diligent efforts need to be expended to improve the model performance in this regard.  Many 2 

models have clouds reaching above the freezing level in the very cold SST regimes around 290 K, 3 

likely caused by misplaced convective detrainments or intrusion of mid-latitude storms into the 4 

subtropics.  Interestingly, such misplaced middle and high clouds in the models over the cold SST 5 

regimes do not occur in the large-scale subsidence regimes (Figure 3a), suggesting that these 6 

clouds are associated with wrongly simulated upward motions over climatologically cold waters. 7 

One region of problem may be the southeastern Pacific, where most models have negative ω500 8 

bias, which may be responsible for the erroneous middle and high clouds there.  9 

The differences of the coupled model simulated SST from the observed SST are generally 10 

small, except near the west coast of Peru and Chile, in the northwestern Pacific and north Atlantic. 11 

The biases are quite consistent across the models, indicating rather universal problems likely 12 

associated with biases in surface radiative and heat fluxes related to marine stratiform clouds.  13 

Separating the modeled errors into three components in the regimes of SST (Figure 6b), we 14 

again find that the cloud parameterization errors dominate the total errors. However, the 15 

contributions of the errors due to inaccurate simulations of SST are non-negligible in each SST bin 16 

and on the tropical average (Figure 6c). For example, the departure of total errors from the 17 

parameterization errors for CWC are discernible at ~500 hPa for NCC, which are not present in the 18 

counterparts in the regimes of ω500. 19 

3.2.3 Cloud profiles sorted by LTS 20 

Although LTS is strongly correlated with SST, the clouds sorted by LTS show some distinct 21 

characteristics (Figure 7a) that are not present in the SST sorted plots (Figure 6a), particularly for 22 

stratiform clouds. In CloudSat/CALIPSO observation, low cloud CWC and CF decrease linearly 23 
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with decreasing LTS until LTS < 12 K, along with an increase in cloud top height. This is similar 1 

to the changes of clouds when SST increases from less than 290 K to 300 K. However, although 2 

most models do not reproduce systematic changes of low clouds with SST, the majority of the 3 

models capture the increase of low clouds with increasing LTS, especially in the simulator CF. 4 

Only CNRM cm5 and two GISS models exhibit little or opposite changes of clouds with LTS in 5 

stable lower tropospheric regimes (LTS > 12 K). Such a difference in SST and LTS sorted cloud 6 

structure may tell us that the model simulated lower tropospheric temperature decouples from the 7 

underlying SST, while the observed lower tropospheric temperature is strongly tied to its lower 8 

boundary. The stratiform cloud parameterizations used in most of the CMIP5 models have 9 

ingredients, with varying extent, that mimic the observed relationship between LTS and low cloud 10 

fraction [Klein and Hartmann, 1993]. However, the decoupling of lower tropospheric temperature 11 

from SST is somewhat disturbing.  12 

For LTS < 12 K, the sorted cloud structure is very similar to that in the regimes of SST > 300 13 

K, confirming the strong correlation of LTS and SST over warm waters (Figure 5a). As shown in 14 

Figure 5a, more scatter is found between LTS and SST for SST < 300 K than for SST > 300 K. 15 

This is probably also related to why model simulated low clouds are well correlated with LTS 16 

when LTS > 12 K but not with SST < 300 K. The differences in the simulated LTS from the AIRS 17 

observation vary between models. The northeastern and southeastern Pacific near the coasts are 18 

two common regions of negative LTS biases. Positive biases are seen over the deep convective 19 

regions, including the western Pacific and equatorial ITCZ.  20 

Figure 7b displays the three components of model errors in the functional space of LTS. 21 

Compared to the decomposed errors described before, we find that the relative contribution of 22 

“large-scale (LTS) error” is significantly larger than the large-scale errors associated with ω500, 23 
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LDV, or SST, for both high and low clouds. For example, CCCMA canesm2 simulated LTS has an 1 

approximately uniform high bias over the tropical ocean, causing the pdf of LTS shifted towards 2 

higher stability values. This is associated with a negative CWC bias in the relatively unstable 3 

regimes (LTS < 15 K) and a positive CWC bias in the stable regimes (LTS > 15 K), compared to 4 

CloudSat total CWC. For LTS between 12 and 15 K, the negative CWC bias due to the imperfect 5 

LTS is superimposed on the dipole pattern (negative above, positive below) of cloud 6 

parameterization errors, resulting in an amplification of the negative UT CWC bias, approximate 7 

cancellation of errors between 600 and 700 hPa, and a reversal of positive to negative cloud bias 8 

below 700 hPa. Over this regime (12 < LTS < 15 K), the large-scale error is not negligible and the 9 

co-variation error amplifies the large-scale error below 600 hPa, instead of compensating it. 10 

Similarly, the error associated with the LTS simulation in the GFDL cm3 also makes an 11 

appreciable departure of the total error from the cloud parameterization error in each LTS bin and 12 

on the tropical average (Figure 7c). Even comparing to the non-precipitating CWC, the “large-13 

scale (LTS) error” is more pronounced than those associated with ω500, LDV and SST. 14 

3.2.4 Cloud profiles sorted by WVP 15 

The clouds sorted by WVP (Figure 8a) exhibit very similar structure to those sorted by SST. It 16 

is related to the close correlation between SST and WVP shown in Figure 5b. The only difference 17 

may be in the erroneous middle and high clouds over the coldest SST regimes, which do not show 18 

up in the lowest values of WVP. This might be related to the fact that many models overestimate 19 

WVP over climatologically cold waters (see corresponding maps of ∆WVP, especially for GISS 20 

and MRI). The inconsistent patterns of sorted clouds in different large-scale regimes reveal certain 21 

biases in the model simulated large-scale parameters. Most models underestimate WVP over 22 
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climatologically warm waters and large-scale ascending regions. This may cause the underestimate 1 

of CWC over these regions. 2 

For the relative contributions of three error components, we find that the errors associated with 3 

the simulated WVP can be of comparable magnitude to that of the cloud parameterization error in 4 

individual WVP bins (Figure 8b). On the tropical average (Figure 8c), the deviations of the total 5 

errors from the parameterization errors are evident in a number of models, although the dominance 6 

of the cloud parameterization errors still holds universally. Using GISS e2-h as an example, the dry 7 

bias over the very moist regions (WVP > 50 mm) creates a negative CWC bias (Figure 8b), 8 

outweighing the positive CWC bias caused by the parameterization error in the UT and in the 9 

lower troposphere. The total CWC error in this regime resembles that from the large-scale error for 10 

WVP > 50 mm. The UKMO hadgem2-es has a widespread dry bias over the tropical ocean, which 11 

is partially responsible for the negative CWC bias over the moist areas with WVP > 50 mm. 12 

3.3 Sorting clouds by relative humidity 13 

RH has been used commonly to parameterize CF [e.g., Gettelman et al., 2010]. Thus, 14 

examining the cloud profiles as a function of RH is directly relevant to validate the cloud 15 

parameterizations. Figure 9a shows the CWC and CF profiles sorted by RH at corresponding levels 16 

(MIROC miroc5 did not provide RH output on the ESG). For the observed data, we use ECMWF 17 

RH, as AIRS RH data are missing over thick cloudy regions. Note that the RH data from the two 18 

GISS models are with respect to (w.r.t.) water throughout the troposphere, unlike other models and 19 

the ECMWF reanalysis, in which the saturation vapor pressure is with respect to ice (water) above 20 

(below) the freezing level. For the ECMWF reanalysis, RH is with respect to water above 273.16 21 

K, to ice below 250.16 K, and with respect to a mixture of both in between 22 

(http://www.ecmwf.int/publications/manuals/metview/manual/Relative_Humidity.html). The exact 23 



 23

temperature threshold for the switch from w.r.t. water to ice in the CMIP5 models may be quite 1 

different.  Hence, there is an ambiguity in comparing RH from different models and the reanalysis. 2 

A rescaling of RH with a unified temperature threshold across the models may be needed for direct 3 

comparison of modeled RH profiles. Nevertheless, the standard model outputs of RH on the ESG 4 

are used in Figure 9a.  5 

In general, there is a dominant peak of CWC in the UT associated with RH greater than 60%, 6 

which is true for several models such as BCC csm1, GFDL cm3, IPSL cm5a, NCC noresm, and to 7 

a lesser extent, CSIRO mk3.6 and UKMO hadgem2-es. CCCMA canesm2 seems to have two 8 

CWC maxima, a weaker one in the UT and a stronger one in the middle troposphere associated 9 

with high RH. CNRM cm5, MIROC miroc4h, MRI cgcm3 have rather uniform distribution of 10 

CWC in the vertical over the regimes of RH > 60%. GISS e2-h and e2-r capture the 11 

correspondence of high RH with high clouds, despite that their RH values are lower than other 12 

models in the UT because they are w.r.t. to water.  13 

The variations of low clouds with RH differ substantially in the models from the observations. 14 

The most notable discrepancy is that the models do not produce sufficient CWC in the areas of 15 

relative humidity less than 40%, while the observed CloudSat CWC spans the full range of RH, 16 

even when RH is less than 20%. Despite that the potential high bias of CloudSat CWC for thin 17 

liquid clouds, the missing clouds in the dry regions in the models may still be an important issue 18 

that requires further study. Applying the simulator CFs yields better agreement with the 19 

observation than the original CFs for most of the cloud features. 20 

For the three error components, besides the dominance of the cloud parameterization errors, we 21 

observe significant contribution of the large-scale error in each RH bin (Figure 9b). The 22 

underestimate of high RH by the two GISS models apparently contributes to the negative (positive) 23 
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CWC bias in the UT over relatively moist (dry) regions with RH greater than (less than) 60%. On 1 

the tropical average (Figure 9c), the departures of total errors from the cloud parameterization 2 

errors are evident for a number of models.  3 

3.4 Sorting clouds by precipitation  4 

 Since precipitation is not a large-scale environmental parameter that is used to parameterize 5 

clouds, the purpose of sorting cloud profiles by precipitation is to visualize their co-variations as 6 

the two are closely coupled. Figure 10a shows that the difference between the models and the 7 

observation is quite large, while the vertical structures of precipitating clouds are rather similar 8 

among the models. Many models exhibit a tri-modal structure of clouds [Johnson et al., 1999], 9 

with increasing cloud top heights with stronger precipitation. Most models do not produce clouds 10 

in the very weak precipitation regimes (rain rate < 0.05 mm/day), except CSIRO mk3.6, MRI 11 

cgcm3, GISS e2-h and e2-r (which produce middle-level clouds over the light rain regimes), while 12 

the CloudSat/CALIPSO observation shows significant CWC and CF in the lightly precipitating 13 

regimes. Haynes and Stephens [2007] reported that the occurrence frequency of light rain observed 14 

by CloudSat is higher than previously thought and that simulated by climate models. The simulator 15 

CFs exhibit a two-modal structure of clouds, closer to the observation than the original CFs, 16 

although differences from the observed CF are still quite evident. 17 

We conduct a similar decomposition of three error components for clouds in the precipitation 18 

regimes. Although we do not regard them as the sources of cloud errors, they do tell us how much 19 

precipitation errors are associated with cloud errors (Figure 10b). Again, the errors of 20 

parameterized clouds in a given precipitation regime are predominant in the total errors, while the 21 

common overestimate of precipitation rates in the models translate into positive CWC biases, 22 

partially compensating the negative parameterization biases in most models. For the two GISS 23 
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models, the positive CWC biases associated with the cloud parameterization errors are exacerbated 1 

by the positive biases associated with the overestimate of high precipitation rates (see Figures 10b 2 

and 10c).  3 

4. Conclusions 4 

This paper examines the cloud distributions in large-scale parameter regimes, focusing on the 5 

cloud vertical structures and their variations with large-scale variables. The regime-dependent 6 

model biases from the observations are decomposed into three components, the large-scale errors, 7 

cloud parameterization errors and the co-variation errors. Despite of a variety of discrepancies in 8 

the simulated cloud structures, a universal feature is that in all models, the cloud parameterization 9 

errors dominate, while the large-scale and the co-variation errors are secondary. This finding 10 

confirms the deficiency in the current state of knowledge about the governing mechanisms for sub-11 

grid cloud processes, as pointed out in the IPCC AR4. Efforts should be devoted to ongoing 12 

improvements of cloud parameterization schemes. On the other hand, the relatively small 13 

contribution of large-scale errors to the total cloud errors suggests that all CMIP5 models produce 14 

reasonable large-scale “mean” states, which are arguably the first-order depiction of current 15 

climate. This is comforting as these large-scale state variables are constrained by global energy 16 

balance, such that modelers usually have less freedom in “tuning” them than modifying cloud 17 

parameterizations. With the new satellite observations as observational metrics, we envision that 18 

significant progress will be made in cloud parameterizations in the coming years.  19 

This study focuses on comparing model simulated cloud water content (CWC) and cloud 20 

fraction (CF) vertical structures with 13 atmosphere-ocean coupled models. We recognize that 21 

large uncertainties exist in the quantitative assessment of model simulated CWC and CF. For CWC, 22 

a major uncertainty is associated with the inclusion of precipitating condensates in CloudSat CWC 23 
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retrieval, while CMIP5 models have non-uniform treatments for snow and rain. This makes a fair 1 

comparison extremely difficult. Using the total CWC and non-precipitating CWC as the upper and 2 

lower bounds of observed CWC, we find that the signs of model biases in CWC, relative to the two 3 

bounds, reverse for many models, suggesting that the modeled values are actually within the 4 

observed uncertainties. Some models exhibit persistent sign of errors with respect to both CWC 5 

quantities, indicating a true signal of biases. For example, the underestimate of CWC by INM cm4 6 

and the overestimate of CWC by the two GISS models are robust at most of the vertical levels. 7 

Many models do not include rain water in the liquid water content output. Therefore, compared to 8 

the non-precipitating CWC, an overestimate of LWC is prevailing. However, compared to the total 9 

CWC, most models have an underestimate of LWC. In the UT, many models produce CWC values 10 

close to CloudSat non-precipitating CWC, but much less than the total CWC. 11 

For cloud fraction, we find that using CALIPSO simulator CF generally brings the model 12 

results closer to CloudSat/CALIPSO combined CF. One of the best examples is UKMO hadgem2-13 

es: the simulator CF shows a much better agreement with the observed CF for both high and low 14 

clouds. Hence, we think it is beneficial to apply the simulator approach in model evaluations, 15 

especially in terms of CF, for which instrument sensitivity has a large impact on the observed 16 

values. Besides CALIPSO simulator, CloudSat, ISCCP and other simulators will also be useful. 17 

Using CALIPSO simulator CF clearly mitigates the seemingly high bias of middle-to-high cloud 18 

CF shown in the original CF by many models; however, the biases of CF in the UT above 200 hPa 19 

and in the boundary layer are still present, for either the simulator CF or the original CF, 20 

suggesting that improvements in the model simulated CF are still needed. 21 

For the large-scale errors, relatively larger errors are associated with thermodynamic 22 

parameters such as LTS, WVP and RH, than dynamic parameters such as ω500 and LDV. The 23 
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model simulated temperature and moisture structures are influenced by diabatic heating resulting 1 

from latent heat release and radiation. The latter are coupled with convection and clouds. Hence, 2 

the relatively large errors associated with LTS, WVP and RH than with ω500 and LDV may be a 3 

manifestation of the feedbacks of cloud errors onto the large-scale thermodynamic parameters. The 4 

model improvements for clouds are certainly a “two-way” game – the coupling between clouds 5 

and large-scale fields requires diligent validations of both fields. 6 

In this study, we show that the model simulated variations of clouds with height bear large 7 

discrepancies from the observations. The model simulated deep convective clouds (in terms of 8 

CWC) usually do not penetrate as high into the UT as the observed, although the maximum 9 

detrainment height shown by CF is correctly placed around 200 hPa. The inconsistency between 10 

CWC and CF vertical structures indicate the mismatch in cloud parameterizations. For low clouds, 11 

we find that the change of cloud top height with large-scale parameters is usually missing in the 12 

models. The best large-scale parameter in the models that characterizes the changes of low cloud 13 

properties (CWC, CF and cloud top height) is LTS. Other large-scale variables have little bearing 14 

on the low cloud amounts, while their counterparts from the observations show clear correlation 15 

with the systematic low cloud amount changes. For climate sensitivity, such variations of cloud 16 

amount with large-scale parameter are probably more relevant than the magnitudes of mean cloud 17 

amounts. This is an area that significant improvements are needed for next generation of cloud 18 

parameterizations.  19 

The large-scale parameters used for this study are not a complete list of variables that may 20 

affect cloud simulations in climate models. Additional parameters, such as wind profiles (including 21 

wind shear) and aerosols may be also important. Furthermore, the combinations of large-scale 22 

parameters and their joint distributions may reveal additional useful information for physical 23 
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mechanisms that control cloud variabilities. Continued investigations using conditional sampling 1 

approach with innovative combination of various large-scale quantities may lead to potential 2 

breakthrough in cloud parameterizations. 3 
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Figure Captions 1 

Figure 1. Annual zonal-mean (top) original and (middle) CALIPSO simulator cloud fraction, and (bottom) 2 

tropical mean (30ºS-30ºN) original and CALIPSO simulator CFs from six CMIP5 models. Model monthly 3 

outputs from 1980-2004 are used.   4 

Figure 2. Scatter plot of lower-level divergence averaged between 1000 and 850 hPa against mid-5 

tropospheric vertical pressure velocity (ω500) for all tropical oceanic grid boxes. Both quantities are from 6 

ECMWF interim reanalysis averaged from January 1980 to December 2004. 7 

Figure 3. (a) Vertical profiles of cloud water content (CWC, in color shadings) and cloud fraction (CF, 8 

original CF in black contours, CALIPSO simulator CF in white contours) sorted by ω500 for the 9 

CloudSat/CALIPSO retrievals and the CMIP5 atmosphere-ocean coupled model simulations. The PDFs of 10 

ω500 are shown in gray dashed lines. For the observation, the ECMWF reanalysis ω500 is used to sort 11 

CloudSat total CWC and CloudSat/CALIPSO combined CF. The difference of model simulated ω500 from 12 

the ECMWF reanalysis ω500 is shown for each model.  13 

Figure 3. (b) Decomposition of model simulated CWC (in color shadings) and CF (in contours) errors in 14 

the regimes of ω500: (top row) the large-scale error, (second row) the cloud parameterization error, (third) 15 

the co-variation error, and (fourth) the total cloud errors. The CWC errors are relative to the CloudSat total 16 

CWC. The model original CFs are used. Only 12 models are shown due to space constraint. GISS e2-r is 17 

not shown and similar to e2-h. 18 

Figure 3. (c) Tropical averages of model simulated CWC and CF errors and the contributions of three error 19 

components. The blue (green) curves are the CWC errors relative to the CloudSat total (non-precipitating) 20 

CWC. The red (black) curves are the original (CALIPSO simulator) CF errors relative to the 21 

CloudSat/CALIPSO CF retrieval. Only 12 models are shown due to space constraint. GISS e2-r is not 22 

shown and is similar to e2-h. 23 
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Figure 4. Same as Figure 3, except lower-level divergence (LDV) is used to sort cloud profiles. The errors 1 

relative to the CloudSat non-precipitating CWC are not shown, and the CALIPSO simulator CF errors are 2 

not shown. 3 

Figure 5. Annual mean lower-tropospheric stability (LTS) calculated from AIRS temperature data and 4 

AMSR-E water vapor path (WVP) scattered against ECMWF sea surface temperature (SST) for all tropical 5 

oceanic grid boxes. The monthly AIRS data from September 2002 to May 2011 and the AMSR-E data 6 

from June 2002 to December 2010 are used. 7 

Figure 6. Same as Figure 3, except SST is used to sort cloud profiles. 8 

Figure 7. Same as Figure 4, except LTS is used to sort cloud profiles.  9 

Figure 8. Same as Figure 4, except WVP is used to sort cloud profiles.  10 

Figure 9. Same as Figure 4, except relative humidity (RH) is used to sort cloud profiles. The maps of 3-11 

dimensional RH are not shown due to space constraint. MIROC miroc4h (with only CWC, not CF) is 12 

shown instead of MIROC miroc5 because RH data are not available for miroc5 and CF is not available for 13 

miroc4h. 14 

Figure 10. Same as Figure 4, except surface precipitation is used to sort cloud profiles. 15 
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